整体型数字式智能称重传感器
如上所述,在称重传感器内部结构设置有变大、过滤、A/D变换,微处理器处理芯片和温度光敏电阻器等构成数据解决电源电路,运用微处理器处理芯片已存进的app,执行各类数据补偿加工工艺,进行全面的功能测试和计量检定,最终选用电子束焊机或激光焊接开展密封性。因数据转换与补偿电源电路和称重传感器为一总体,故称之为整体型数字式智能称重传感器。
数早化与数早式称重传感器的区别
模拟式称重传感器的被测重量参数虽然最初是由敏感元件以模拟形式给出,但都还要转换成模拟电压或模拟电流。在制造工艺、电路补偿与调整、信号调理、模一数转换等方而已经积累了很多经验,因而应用而比较广泛。但其输出信号小,传输距离短,抗干扰能力差,各补偿项目交互作用,电路补偿与调整工艺复杂,不但耗时费力而且补偿精度较低等缺陷,决定了模拟式称重传感器向数字式智能化方向发展,只能寄生于应变电桥之外的数字转换单元,变模拟信号为数字信号。因而,出现了两种数字转换途径,一种是将模拟式称重传感器的输出信号,通过安装在其内部的数字变送器,变为数字信号输出,通常称为数字化称重传感器。
模拟式称重传感器+数字变送器、数字化称重传感器
数字变送器可以作得很小,称为数字变送模块,一般都将它固定在模拟式称重传感器的接线盒内,即方便调试又有利于密封。数字化称重传感器的力学和温度性能指标,都是以模拟式称重传感器的制造工艺和电路补偿与调整技术为基础的,数字变送器只是将模拟输出信号数字化,并不能提高各项性能指标,相反,如果数字变送器质量不佳,还会损失一些固有的性能,。因而生产厂家通常挑选那些电路补偿精度高,综合性能好的模拟式称重传感器进行数字化处理。
模拟式称重传感器,基本上是手工化生产,人为的因素对产品质量影响较大。零点温度,灵敏度温度,线性、滞后、蠕变等补偿方法和补偿工艺还不够完善,各项补偿之间交互作用,不可避免的产生残余误差,限制了准确度和稳定性的进一步提高。
数字式智能称重传感器,基本上是自动化生产,人为的因素对产品质量影响很小。其数字调零,标度变换,温度补偿线性、滞后、蠕变补偿等,都是通过内部的微处理器收集、处理并存储各种数据。由于采用“数据库”技术,使得微处理器能不断的对数据进行识别和校正,使其具有更多的智能,发挥更大的作用。可见数字处理电路和软件设计是实现数字补偿技术与工艺的重要环节。